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Abstract. The case of polaron and bipolaron formation due to electron-phonon coupling was 
studied on a lattice with son non-linear intersite interactions. The ground state of a system that 
consists of one or two electrons coupled to a non-linw lattice was obtained numerically. The 
binding energy of the bipolaron was examined as a function of the degree of the non-linearity 
of the lattice. A model was investigated where the interatomic interactions in the lattice itre 
described by a double-well potential This type of non-linear interaction strongly influences 
the bipolaron formation and generally improves its stability and increases its binding energy by 
permitting a local structural change of the lattice. 

1. Introduction 

The localization of electrons on one-dimensional lattices due to electron-phonon coupling 
has been extensively studied [ I ]  over the last decades. Emin and Holstein [2] have shown 
that the ground state of a system that consists of an electron coupled with a linear lattice is 
either an extended Bloch-type function, or a polaron, namely a state where the electron is 
trapped permanently by a strong local deformation of the lattice. For a perfectly periodic 
quantum mechanical system the polaron is always extended [ I ] ,  although its effective mass 
can be very large. In such a case a small amount of disorder will localize the polaron. 

The Emin and Holstein model, where the interatomic lattice interactions are linear, is 
physically meaningful as an aproximation in the case of weak deformation of the lattice, 
corresponding to weak coupling. If stronger electron-phonon coupling is considered, non- 
linear terms should be included in the lattice Hamiltonian, which can introduce a variety of 
new stmctural and dynamical features in the model. 

Experimental evidence suggests that the introduction of electron-phonon coupling in 
an anharmonic lattice creates a model with many interesting features. The strong electron- 
phonon interactions are increasingly recognized as essential in understanding the properties 
of high-T, superconducting materials [3]. Recent ion channelling [4] and neutron scattering 
[5] experiments give evidence for large anharmonic lattice fluctuations in several of the 
cuprates, where the coupling of the ‘breathing’ modes to the electron system leads to local, 
phonon-driven, charge instabilities. Based on these findings, the existence of polaronic and 
bipolaronic electronic states was extensively examined [6]. Furthermore, both traditional 
high-T, superconductors and the new ones (ceramic cuprates, fullerides [7]) exhibit structural 
instabilities and/or structural phase transitions, suggesting that the lattice is anharmonic and 
soft. Thus it is important to study the influence of anharmonicity on the effects of the 
electron-phonon interaction. 
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In the present work the formation of polarons and bipolarons is examined in a one- 
dimensional (ID) non-linear lattice. The ID feature was selected, in  spite its limitations, 
becauses it simplifies the numerical work and permits the investigation of a finite system 
of meaningful size. 

Using the model presented here, we attempt to understand the influence of structural 
instabilities of a lattice on the formation of polarons and bipolarons. The lattice interatomic 
interaction is modelled by a double-well potential. In this way the lattice has two structural 
phases corresponding to two possible lattice constants. Therefore the creation of a polaron 
or bipolaron can be accompanied by a local structural deformation, if the related distortions 
are strong enough. Hence, the soft non-linear model described in detail in section 2, even 
though it is ID, includes a variety of interesting structural and dynamical properties related 
to the formation of polarons and bipolarons. 

The stability of a bipolaron in this system is an important property of the model. 
For this reason it is examined systematically in section 3 on a finite system by an exact 
diagonalization method. Our results show that the soft non-linear interaction of the model 
favours a binding between two polarons stronger than that of the linear system. 

2. Description of the model 

We are interested in studying the ground state properties of a system that consists of one or 
two extra electrons coupled to a ID lattice. We consider first the case of a single electron in 
the band, so that it can be described as a spinless particle. The Hamiltonian of the system 
consists of three parts. The first one describes the electrons in a tight-binding approximation: 

where €0 is the on-site electron energy when the lattice does not interact with the electron, J 
is the nearest-neighbour intersite energy, and c!, c,, are the creation-annihilation operators 
for the electron. Using the above notation the one-electron state can be described by the 
wave function 

where the coefficients pn are normalized to unity, so p,, = lp,,12 describes the probability 
of finding the electron at the nth site of the lattice. 

The second part describes the lattice Hamiltonian in the adiabatic limit: 

where yn denote the displacements of the lattice particles, and V is an interatomic potential. 
Finally the third part describes the electron-phonon interaction: 

where x is the electron-phonon coupling constant. 
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It is convenient to scale the above semi-classical model so that J = 1 and V ( r )  satisfies 
the conditions 

V ( 0 )  = 0 V”(0) = 1. (5)  

By applying these scaling tranformations and replacing the displacements yn with the relative 
displacements A,, 

An = Y E  - R-I (6) 

the above Hamiltonian takes the form 

H = [eocic, - C;(C,-I +%+I) + V(A,) +&A,, + A n - ~ ) c ~ c o l  (7) 

where A is the dimensionless electron-phonon coupling constant used in the theory of 
superconductivity and eo is the scaled on-site electron energy. Since we examine the 
electron-phonon interaction in a system without disorder, eo is uniform in all sites. Therefore 
the first term of the Hamiltonian (7) can be neglected. Hence the Hamiltonian of the model 
is reduced to 

n 

H = [-c;(c,-I t cn+d + V(A,) + &(An + A,-I)c/c, I. (8) 
n 

If two electrons with opposite spins are considered, the electron state can be described 
by the wave function 

where the coefficients h,, are normalized to unity. Therefore, the electron probability at 
the nth site of the lattice is given by 

In the two-electron case an extra term must be introduced into the Hamiltonian to 
describe the electron-zlectron repulsion. A simple way to express this repulsion is to 
consider only on-site repulsion between the two electrons, as in the Hubbad model. 
Therefore the new Hamiltonian is 

(1 1) 

where U is the on-site electron4ectron repulsion energy. 
In order to determine the ground state for this system with one or two electrons, we 

have to diagonalize the Hamiltonian (1 1) and simultaneously optimize the result with respect 
to An, Numerically, this can  be accomplished for a finite lattice by a modified Lanczos 
technique. Starting with a arbitrary configuration for the relative displacements An,  we 
calculate by exact diagonaIization the ground state wave function and the local electron 
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densities, p.. The local electron densities are related to the displacements An via the 
optimization conditions 
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Equations (12) can be solved with respect to An, while the constraints imposed by the 
boundary conditions of the finite system are also taken into account. In this work we 
consider periodic boundary conditions for the finite lattice. This imposes the following 
constraint for the relative displacements An:  

An = 0. 

Therefore the optimization conditions (12) are solved under the constraint (13). 
In the special case where V ( A , )  is the harmonic potential, equations (12) are linear 

with respect to An and can be solved analytically. This possibility also exists if V ( A , )  is 
a cubic or quartic polynomial. In this work we chose to study a lattice with a double-well 
intersite interaction. Specifically we used the piecewise quadratic potential 

V ( A )  = A* if - x 0  g A 2 

V ( A ) = b  - f k ( A + a ) '  if - Z a + x o S A g - x o  (14) 

V ( A )  = $(A+20) '  if A 6 - 2 a + x o  

where k = 2b/(az -2b)  and xg = ka/(k + 1). The parameter k must be a positive number, 
therefore b < (a'/Z). The function (14) has two free parameters, which control its non- 
linear character. The parameter a controls the distance between the two minima of the 
double well, while the parameter b controls the barrier height. Therefore the model (11) 
allows an arbitrary flattening of the potential in the region -2a < A g 0 by varying the 
barrier height without changing the distance between the two minima (figure I ) .  

0.11 

0.0 L 
0.0 5.0 10.0 

X U 
Figure 1. The interatomic lattice interaction potential as 
a function of the relative displacement. The parameters 
of the model are selected as n=0.2 and h=0.01. 

Fiaur-2 2. Phase diagram of the linear cm 
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The double-well potential (1 1)  enriches the problem of polaron formation by introducing 
an extra structural feature of the lattice, which, in this case, has two possible lattice constants 
corresponding to two different phases. The barrier height, b, is the most important of the 
two parameters of the model, since it directly controls the critical value of the electron- 
phonon coupling for changing the lattice constant locally. The existence of two local 
structural phases in this model creates a variety of local minima, therefore one must use the 
optimization method described above, carefully, in order to obtain the ground state of the 
system. 

The properties of the model are further enriched if periodic boundary conditions are 
considered. This assumption imposes the constraint that the total length of the lattice is fixed. 
Therefore the regions of the lattice with short lattice constant cannot be arbitrarily large. 
Moreover, the above constraint causes important finite-size effects, since the compression 
of a number of bonds is accompanied by the elongation of the rest of the lattice. The size 
of the distortion of these expanding bonds depends on the total length of the lattice. This 
feature of the model should not be considered as a weakness beacause it introduces in a 
simple fashion the local character of the structural change of the lattice. 

3. Polaron formation 

In this work, we attempt to study the polaron and bipolaron formation due to electron- 
phonon coupling in a lattice that exhibits two structural phases. This type of lattice is 
modelled by the system described in section 2. In this model there are three physical 
parameters: the electron-phonon coupling constant A, the barrier height b, and the on- 
site electron-electron repulsion U. As a result a variety of microphase transitions can be 
observed in this three-dimensional (3D) phase diagram, which will be examined in detail. 
Our computations were performed on a I D  finite lattice with 144 sites. This size of the 
lattice offers the possibility for a systematic numerical study of its phase diagram. The 
stability of the bipolaron which is expressed by its binding energy, was also studied as a 
function of these three parameters. The binding energy of the bipolaron is defined as 

Es = E2 - 2Er (15) 

where E2 is the bipolaron ground state energy and El is the polaron ground state energy. 
There are three distinct phases on the phase diagram described above. The first one 

is the ‘extended’ state, where the localization length is longer than the size of the finite 
lattice considered. This pseudoextended state mimics a 3D feature on a ID lattice. This state 
generally exists for small values of the parameter A. If the electron-phonon coupling 
increases, the electrons become localized, but they can either form two separate polarons, or 
bind together to form a bipolaron. The competition between the electron-electron repulsion 
U and the non-linear parameter b controls this second transition. 

We examine first the linear case of this model, corresponding to large b. In this case 
the phase diagram of the two-electron system is two-dimensional and is shown in figure 2. 
There it  is shown that the phase transition between the two-isolated-polaron state (P) and the 
bipolaron state (BP) strongly depends on the repulsion parameter U. The electron-phonon 
coupling also influences the stability of the bipolaron, which increases with its strength. 
The transition between the ‘extended’ and the localized state obviously depends only on 
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0.0 
0.00 0.01 0.02 

M e r  height coupling, Jh 

o,lL 
Figure 3. Phase diagram of he single-electron system. 
The dashed line corresponds to the region of strongly 
soft non-linwily, where the curvaure. k. of the barrier 
is smdL (k E 0.1 << I). In this region rhe bchaviour of 
the model is not well understood. 

Figure 4. The bipolaron binding energy as a function of 
lhe electron-phonon coupling. fi, for the c m  where 
U=O. The dashed line corresponds to the linear model. 

f i  for the single-polaron case, while for the bipolaron case, the electron-electron repulsion 
facilitates the delocalization of the electrons. A similar phase diagram is presented in [SI. 

In the non-linear case the phase diagram is enriched with the third parameter b, which 
describes the barrier height (figure I ) .  The parameter a is choosen to be equal to 0.2 length 
units, so the distance between the two minima of the function (14) is 0.4 length units. Under 
this assumption the acceptable range for the parameter b is the interval [O, 0.02). Therefore 
the maximum value of b corresponds to 232 K, if J is 1 eV. This restriction is imposed by 
the form of the non-linear potential (14), where k is positive. In order to explore the three- 
parameter phase diagram of the model, we first examine the case of a single electron in the 
lattice. The corresponding phase diagram is presented in figure 3. Our calculations show 
that the value of the electron-phonon coupling necessary for creating a small polaron 
(localized state) decreases with the barrier height b .  In other words the soft non-linearity 
of the model that permits a st.ructuraI deformation of the lattice facilitates the electron 
localization. For very small barriers (b  e 0.001), the segment of the potential function 
with negative curvature covers most of the region between the minima, while its curvature, 
k, approaches zero. As a result a large number of configurations become degenerate with 
respect to the lattice energy. This unnatural feature of the model is pictured in figure 3, 
where an unexpected behaviour is observed at low values of b (dashed line). For large b 
(b  0.02) the behaviour of the system becomes similar to that of the linear case. In the 
two-electron case the above result also describes the transition between the isolated polaron 
state (P) and the 'extended' state (EXT). 

For small values of the electron-electron repulsion U, a bipolaron state exists for 
sufficiently large values of the electron-phonon coupling. Figure 4 presents the dependence 
of the bipolaron binding energy on f i  where U was selected to be equal to zero for several 
values of the barrier height. The dashed curve corresponds to the linear case. Figure 4 
shows that the bipolaron binding energy is strongly influenced by the non-linear lattice 
interactions. Specifically, a sharp increase of the binding energy occurs in the case of the 
narrow polaron, for small values of b ,  because the strongly localized electrons cause a local 
change of the lattice constant. In other words, the formation of a narrow polaron is generally 
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accompanied by a lattice distortion. If this distortion is large, the corresponding bonds are 
compressed to the shorter minimum (at position -2a in figure 1) causing a local structural 
change. Since the increase of the electron density also increases the lattice deformation. the 
bipolaron formation is favoured by this property of the model and its stability improves. 

The large fluctuations of the binding energy shown in figure 4 are a result of the 
discrete character of the examined system. The binding energy depends on the ground state 
energy E2 and El of the two-electron system and of the single electron system, respectively 
(definition (15)). Both E1 and E2 depend on the size of the compressed region of the lattice. 
The extent of the compressed region increases as the electron-phonon coupling increases. 
The size of the compressed region is measured by the number of compressed bonds, which 
is an integer. Therefore the widening of the compressed region takes place in discrete steps. 
Since the size of the compressed region increases in  discrete steps at different rates for the 
one-electron and two-electron cases, the binding energy, E g ,  fluctuates. 

For small values of b, the formation of a polaron creates a region of the compressed 
phase in the lattice, as we explained earlier. It is easy to show that the deformation at the 
boundaries between the two regions with different lattice constant has the largest contribution 
to the elastic energy of the lattice. Therefore the soft non-linearity increases the stability of 
the bipolaron, since a stronger repulsion U is required to break the compressed region of 
the lattice into two. This result is better demonstrated by studying the .& versus Cl phase 
diagram for a typical value of the parameter 6 equal to 0.005 (figure 5). On this phase 
diagram, we observe that the critical value of U for the bipolaron-polaron transition moves 
to higher values in comparison to the linear case. Moreover, the bipolaron state increases 
its stability at the expense of the ‘extended’ state as well. Therefore, a bipolaron is the 
ground state of the system for smaller values of fi and larger values of U in comparison 
to the linear case (figure 2). 

0.5- 

0.11 M I 
1 

0.0- 
0.0 5.0 10.0 Figure 5. Phase diagnm, d versus U, for the non-linear 

U system. where h9.005 and a-0.2. 

The non-linear interactions in the lattice produce interesting behaviour only when 
polarons are formed, since the ‘extended’ state corresponds to a uniform uncompressed 
lattice. For this reason we study the bipolaron binding energy as a function of the non- 
linear parameter b, while U=O and .&=0.3. These values of the electron-phonon coupling 
and the electron-electron repulsion do not permit the ‘extended’ state to be the ground state 
of the system for all values of b, as figures 2 and 5 show. The results are plotted in figure 6. 
In the same figure we plot the size of the region of the compressed phase as a function of 
the number of compressed bonds for the bipolaron and single-polaron cases. Because of 
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the discrete character of the lattice, the size of the compressed phase region is a multi-step 
function. Consequently. the binding energy is also a function of the same type, as shown in 
figure 6. Regardless of its step-like shape, the bipolaron binding energy shows a maximum 
as a function of b at the value of approximately 0.012. The existence of a maximum of the 
binding energy for moderately large values of the barrier height, b,  is an important result of 
this numerical study. In other words, there is an optimum value of b, where the bipolaron 
effects on the lattice are stronger than those of the single polaron. The maximum value of 
the binding energy is considerably larger than the binding energy corresponding to the linear 
case, indicated by the dashed line in figure 6(b). Even though these results are obtained for 
a specific model, where the finite-size effects are important, they generally demonstrate the 
role of structural instabilities of the lattice, described by a soft non-linearity, in improving 
the bipolaron stability. 

A D Misrrioris and E N Economou 
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0 . .  . , . . . .  I .  . . I . .  . . 
0.000 0.005 0.010 0.015 0.020 

Barrier height 

o.o l....._--ll.ll 1 
0.000 0.005 0.010 0.015 0.020 

Barrier height 

Figure 6. (a) The size of the compressed phase region as a function of the non-linear pmmeter 
b for the bipolaron case (continuous line) and for the single-polaron case (dashed line). (b) The 
bipolaron binding energy as a function of the non-linear parameter b. The m t  of the pmmeten 
of the model art selected as follows: LIS, &0.3 and n d . 2 .  

Another way to examine the bipolaron stability for the non-linear system is to study the 
U versus b phase diagram for f i  equal to 0.45. For this value of fi, the electrons are 
localized for all values of (I and b. Therefore, on this phase diagram we study the transition 
from the bipolaron to the single-polaron state. Figure 7 shows that the non-linear interaction 
generally increases the critical value of U for the polaron-bipolaron transition, although in 
a non-monotonic way. For large values of b the critical electron-electron repulsion for 
this transition tends towards the corresponding value of the linear system (dashed line). 
Nevertheless, the restriction imposed by the assumption that k is positive in  formula (14) 
limits the acceptable range of the parameter b to lower values. The discrete character of 
the system examined produces effects on the transition line similar to those observed for 
the binding energy in figure 6. At selected regions on the b axis a very strong repulsion 
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for the electrons is needed to break the bipolaron. This behaviour is a result of the short 
range of the repulsion. Because of the on-site repulsion between the two electrons. the 
polarons can strongly reduce the repulsion energy by retaining a short distance from each 
other equal to 2-4 lattice sites, while their corresponding compressed regions of the lattice 
remain connected (figure 8). 

20.0 

3 10.0 

0.0 
0.00 0.01 0.02 Figure 7. Phase diagram, U versus b, for the non-linear 

Banier height system, where Ad.45 and 0=0.2. 

-0.- o’lI-;l 50 eo 

5 
2 3 -04 
3 
23 

lattice site 

Figure 8. Profiles cfthe electron density and the lattice deformation for the u s e  where &=0.4=0.45. 
U=IO, b4.006. n 4 . 2 .  

The above numerical results demonstrate the influence of a soft non-linearity on the 
bipolaron formation. It was shown that the bipolaron state resists transitions towards either 
an ‘extended’ state or isolated polarons in a non-linear lattice with two structural phases 
more strongly than in the linear lattice. 
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4. Conclusions 

The ground state of a system with one or two electrons coupled to a finite non-linear lattice 
with periodic boundary conditions was studied numerically by an exact diagonalization 
method. The lattice intersite potential is described by a double-well function, which 
introduces a soft non-linearity to the lattice model, as observed experimentally in almost all 
the high-T, materials (cuprates, fullerides). This function was constructed in such a way 
that the potential can become arbitrarily soft. Therefore, the lattice exhibits two structural 
phases, namely the normal and the compressed one. 

The localization of an electron in this type of lattice, in other words the formation of a 
polaron, is accompanied by a local structural change of the lattice, if the intersite potential 
is sufficiently soft. The two local configurations of the lattice structure tend to separate in 
order to minimize the lattice energy. This property of our model improves the stability of 
a bipolaron and increases its binding energy by forcing the two electrons to remain bound. 
As a result, stronger repulsion between the electrons is required to break the bipolaron. 

Even though the same feature of the model can cause clustering of more than two 
electrons, the formation of large clusters of electrons could be supressed because of 
the increased electron-electron repulsion among the electrons. Unfortunately, detailed 
numerical studies of a lattice of the same size as that studied above with more than two 
electrons are not possible because of the large dimension of the electron wave function. 

The increased binding of the electronic pair, due to soft anharmonicity of the 
lattice, may possibly account (at least partly) for the elevation of the critical temperature 
for superconductivity in  cuprates and fullerides. To explore this possibility, further 
investigations should be conducted on the dynamic properties of the polarons and the 
bipolarons formed on an anharmonic lattice, in order to examine their stability from the 
dynamical point of view and determine their effective mass. 
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